US009176762B2

United States Patent

(12) 10) Patent No.: US 9,176,762 B2
Deshpande et al. 45) Date of Patent: Nov. 3, 2015
(54) HIERARCHICAL THRESHOLDS-BASED 5882; 8%%8‘9“6‘ i} 1?%882 giChardtS fit al.
caty et al.
VIRTUAL MACHINE CONFIGURATION 2009/0070771 Al 3/2009 Yuyti}t/ung et al.
2009/0300173 Al* 12/2009 Bakmanetal. 709/224
(75) Inventors: Deepak Arun Deshpande, Pune (IN); 2010/0191854 Al 7/2010 Isci et al.
Anindya Neogi, New Delhi (IN); Priti P. 2010/0250642 Al 9/2010 Yellin et al.
Patil, Pune (IN) 2011/0225277 Al 9/2011 Freimuth et al.
. OTHER PUBLICATIONS
(73) Assignee: INTERNATIONAL BUSINESS
MACHINES CORPORATION, Bobroff, et al., Dynamic Placement of Virtual Machines for Manag-
Armonk, NY (US) ing SLA Violations, Integrated Network Management, 2007. IM *07.
10th IFIP/IEEE International Symposium on, 119-128 , May 21,
(*) Notice: Subject to any disclaimer, the term of this 2007—Yearly 25 2007.
patent is extended or adjusted under 35
U.S.C. 154(b) by 332 days. * cited by examiner
(21) Appl. No.: 13/539,793 Primary Examiner — Lewis A Bullock, Jr.
Assistant Examiner — Wynuel Aquino
(22) Filed: Jul. 2, 2012 (74) Attorney, Agent, or Firm — Garg Law Firm, PLLC;
Rakesh Garg; Parashos T. Kalaitzis
(65) Prior Publication Data
US 2014/0007093 A1 Jan. 2, 2014 (57 ABSTRACT
In response to a performance parameter of a virtual machine
(51) Int.CL (VM) exceeding a threshold, an operation to be performed
GOGF 9/455 (2006.01) relative to the VM is identified. A resource requirement of
GOGF 9/50 (2006.01) performing the operation is determined using a resource
(52) US.CL requirement thresholds hierarchy. The resource requirement
CpPC ... GO6F 9/45533 (2013.01); GO6F 9/5011 thresholds hierarchy is usable for computing the resource
(2013.01); GO6F 2209/504 (2013.01); YO2B requirement of the operation when the operation is performed
60/142 (2013.01) at a specified level in a hierarchy within a virtualized envi-
(58) Field of Classification Search ronment where the VM is executing. A violation value result-
None ing from performing the operation is determined using a
See application file for complete search history. violation value thresholds hierarchy. If the resource require-
ment and the violation value do not exceed a resource require-
(56) References Cited ment threshold and a violation value threshold respectively, a

U.S. PATENT DOCUMENTS

7,818,145 B2 10/2010 Wood et al.

8,175,863 B1* 5/2012 Ostermeyer et al. 703/22
8,621,057 B2* 12/2013 Kurodaet al.
8,768,976 B2* 7/2014 McLachlanetal. 707/805

300

W

first configuration of the VM is revised to a second configu-
ration of the VM. The second configuration includes a result
of'performing the operation relative to the VM at the specified
level in the hierarchy.

18 Claims, 9 Drawing Sheets

DATA CENTER 1

e o o DATA CENTER p

A 4 A

CLUSTER 1

306

CLUSTER 2 o o » 4 CLUSTERnN

HOST 1

HOST 2
304

VM2 o o » o VM x

US 9,176,762 B2

Sheet 1 of 9

Nov. 3, 2015

U.S. Patent

oL
(S)301A3Q T¥YNY3LX3

A

(=
—
—

H31dvAV XdOMLIN

A

A

4
(8)30v4y3aLNI O/ nl

—>

It
AV1dSIa

«-5—>

901

LINN DNISS3004d
Z7T I'_ 0¢l 3HOVO
WILSAS
JOVHOILS
IV_ 8l Nwd
9l
AHOWIN
201
YIAYIS WILSAS
¥3LNdWOD
1 °OI4

Q
(=]
—

U.S. Patent Nov. 3, 2015 Sheet 2 of 9 US 9,176,762 B2

.
)
I Y

US 9,176,762 B2

Nov. 3, 2015 Sheet 3 of 9

Patent

U.S.

SW3LSAS

G¢ FHVYMLH40S ANV JHVMAHVH

IHVMLI0S
ISERYES] CENNE) SINTLSAS SYIAYIS
JYVML40S NOILYDI1ddY 3avg @wm__mm_wx JYNLOTLIHONY
asvaviva iomuan ONPROMIEN - ag0n015 @l @l osiy SANVYANIVIV
Sealii
U © A I (2
1
SLN3ITO SNOILVOITddY SHHOMLIN IOVHOLS mmm._,ww_m_m\vm/m_w vse NOLLVZIVALYIA
IVNLHIA IVNLHIA IVNLHIA IVNLYIA

=== =

s

cHs=

Gac

97 SAVOTINOM
INTNTTIZTNS
INIWIDYNYI ONIDINd
any - Tv.L¥Od v ONINOISIAO¥
ONINNY1d d3sn
I0IAYTS ONI¥3LIN F0MNOS3d
Vs
z

[
8%e SAVOTIMHOM

ONISS3O0Hd

55z ONISS3O0™d SOILSATYNY NOILvONd3
NOILVOI1ddY, NOILOVSNVYYL viva NOOYSSY10
IVNLAIA

Ad3IAIN3AA

JIVMLJ0S

ININIOVNVYIN

3710A034IN NOILVOIAVN

anv anvy
1IN3INdOT1IAId ONIddVIN

qc ‘DI

US 9,176,762 B2

Sheet 4 of 9

Nov. 3, 2015

U.S. Patent

X WA Z WA o
q | ﬁ
W [SOH . Hmwz | 1SOH
q q |
u¥3LSNTO Zya1sn1o . m_m_@ma._o
q I ﬁ
d¥31N3O Viva 8oe

L ¥31IN30 V1vd

£ D14

t

Q
Q
(<2

US 9,176,762 B2

Sheet 5 of 9

Nov. 3, 2015

U.S. Patent

iy
1INIW3IOV1d ANV
NOILYHNOIANOD
AA 3ANINNOD3Y

<

o
1NINOdJWOD
ONILNdNOD
JHOOS MSIH

1
]
]
]
]

a

80
JHOOS ASIY

¥

90v

NOILVIOIA

cor
NOILYOI1ddV

1454
AHOYVYEH
1800

VY "OI1d

0¥
1INIW3IOV1d ANV
NOILVINOIANOD WA

U.S. Patent Nov. 3, 2015 Sheet 6 of 9 US 9,176,762 B2

o
LD
S

“

(B)

90
80
70
60
50
40
30
20
10

0

FIG. 4B

VA

O
<

5
60
50
40
30
20
10
0

US 9,176,762 B2

Sheet 7 of 9

Nov. 3, 2015

U.S. Patent

cig
FHOOS MSIY FHL LNd1no

i

015
SANTVA (S)d3LINVHVd
3HL ONISN WA 3HL HO4
IHODS MSI¥ ¥V ILVINOTVO

A

ON

805
¢SATOHSIAHL
ONIONOdSIHHOD
ONIQ330X3
SH3LINVHEV
JHON

905
QIOHSTYIHL vV Sa330X3
1VHL WA JHL 4O
HILINVIV V A4ILNIAI
A

[

P

05
WA JHL NO aVOTHIOM
MHVYAWHONEEG v 3LN03IX3

»

208
AA'Y 40 NOILVINOIINOD .
<m_>_m_0m_m_

008

US 9,176,762 B2

Sheet 8 of 9

Nov. 3, 2015

U.S. Patent

019
AHOYVY3IH LSO V ONISN
NOILYHIHO H0 304N0s3d
3HL 40 1SOD V ININY3.13d

809
FHOOS MSId IHL JONA3Y

4%
LATOHSTHHL
1S0OD V NIHLIM
WA 3HL 40 1LS0D
M3AN

S3A

!

¥19
1S00 M3IN IHL NO
a3asvd NAFHL
40 HLOE HO ‘LNIWIAOV1d
‘NOILVENDIANOD FHL 3SINTS

919
HLOg ¥0 ‘INIWNIOV
‘NOILYHNDIANOD
d3sIAgd 3HL LNd1nO

ANV 4313WNVEVYd 3HL
ANAOHdI OL NOILYH3dO dO
324dN0S3d V AdILNAdI

A

i
)

an3

909
FHOOS HMSId SIAA THL
OL ONILNEIHLNOD WA
3HL 40 SY313NVHYd
40 NOILVYNIGINOD V¥ 40
HI13NVEVYd V¥ A4ILNEAI

09
NSIY 40
13A37 ATOHSIHHL
V¥ Sd330x3
JHOOS MSIH

ON

209
WAV H04 34008
MSIY V ILNWOD/FAIFOTY

at

(=]
=
O

1yvl1s

9 'O1d

US 9,176,762 B2

Sheet 9 of 9

Nov. 3, 2015

U.S. Patent

0tz
SATOHSTEHL
1S0D V NIHLIM
WA 3HL 40 1SOD
M3N

S3A

X

807
AHOYVHIH LSOO ¥V ONISN
NOILYH3dO 4O 304dN0Os3d
dH1 40 1S02 V ININY313d

907
NOILV10OIA IHL IAONIY
OL NOILVHd3d0O d0
304N0OSEd V Ad4ILN3AI

495
150D M3IN 3HL NO
a3asva NA FHL
40 HLOg ¥O0 ‘INJFWNIOV1d
‘NOILYHYNOIANOD IHL ISIATY

A

A -
»

0L
NOILY1OIA IHL OL
ONILNEIYLNOD
(SY3LINVHVC
40 NOILYNIGWOD ¥ HO)
H3ILINYIVYC V AJILNIAI

vz
HLO8 YO ‘LNIW3oV1d
‘NOILVHNDIANOD
a3siAgd 3HL LNd1no

A

({0
ANAY NI NOILVTOIA Y 40
NOILYOIANI NV JAIFOIY

1yvis

at

~]

L OId

US 9,176,762 B2

1
HIERARCHICAL THRESHOLDS-BASED
VIRTUAL MACHINE CONFIGURATION

TECHNICAL FIELD

The present invention relates generally to a system, and
computer program product for operating a data processing
environment. Particularly, the present invention relates to a
computer implemented method, system, and computer pro-
gram product for hierarchical thresholds-based configuration
and placement of virtual machines (VMs).

BACKGROUND
Description of the Related Art

Certain data processing systems are configured to process
several workloads simultaneously. For example, separate vir-
tual data processing systems, such as separate VMs, config-
ured on a single host data processing system often process
separate workloads for different clients or applications.

In large scale data processing environments, such as in a
data center, thousands of VMs can be operating on a host at
any given time, and hundreds if not thousands of such hosts
may be operational in the data center at the time. A virtualized
data processing environment such as the described data center
is called a “cloud” that provides computing resources and
computing services to several clients on an as-needed basis.

SUMMARY

The illustrative embodiments provide a system, and com-
puter program product for hierarchical thresholds-based vir-
tual machine (VM) configuration. Responsive to a perfor-
mance parameter of the VM exceeding a threshold, an
operation to be performed relative to the VM is identified. A
cost of performing the operation is determined using a
resource requirement thresholds hierarchy. The resource
requirement thresholds hierarchy is usable for computing the
cost of the operation when the operation is performed at a
specified level in a hierarchy within a virtualized data pro-
cessing environment (environment) where the VM is execut-
ing, the hierarchy within the environment being a data center
hierarchy that defines a logical virtualization infrastructure
within a data center. A violation value resulting from per-
forming the operation is determined using a violation value
thresholds hierarchy. The violation value thresholds hierar-
chy is usable for computing the violation value resulting from
the operation when the operation is performed at the specified
level in the hierarchy within the environment where the VM is
executing. Responsive to the cost not exceeding a cost thresh-
old and the violation value not exceeding a violation value
threshold, a first configuration of the VM is revised to a
second configuration of the VM, wherein the second configu-
ration includes a result of performing the operation relative to
the VM at the specified level in the hierarchy.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The novel features believed characteristic of the embodi-
ments are set forth in the appended claims. The invention
itself, however, as well as a preferred mode of use, further
objectives and advantages thereof, will best be understood by
reference to the following detailed description of an illustra-
tive embodiment when read in conjunction with the accom-
panying drawings, wherein:

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 1 depicts a cloud computing node in accordance with
an illustrative embodiment;

FIG. 2A depicts a cloud computing environment in accor-
dance with an illustrative embodiment;

FIG. 2B depicts abstraction model layers in a cloud com-
puting environment in accordance with an illustrative
embodiment;

FIG. 3 depicts a block diagram of an example hierarchy in
a data processing environment using which configuration
thresholds for various VM configurations, and the violation
values associated there with, can be computed in accordance
with an illustrative embodiment;

FIG. 4A depicts a block diagram of an application configu-
ration for hierarchical resource requirement thresholds-based
VM configuration manipulation in accordance with an illus-
trative embodiment;

FIG. 4B depicts line graphs of example methods for com-
puting violation values in accordance with an illustrative
embodiment;

FIG. 5 depicts a flowchart of an example process of calcu-
lating a violation value for a VM in accordance with an
illustrative embodiment;

FIG. 6 depicts a flowchart of an example process of hier-
archical resource requirement thresholds-based VM configu-
ration for reducing a likelihood of a violation in accordance
with an illustrative embodiment; and

FIG. 7 depicts a flowchart of an example process of hier-
archical resource requirement thresholds-based VM configu-
ration for removing a violation in accordance with an illus-
trative embodiment.

DETAILED DESCRIPTION

One objective of a virtualized data processing environment
is to maximize the utilization of computing resources while
providing the clients their respective acceptable levels of
service. The illustrative embodiments recognize that operat-
ing such a virtualized data processing environment requires
careful planning and configuration of the computing
resources.

For example, the illustrative embodiments recognize that
configuring a VM with an amount of computing resources
that is sufficient to execute a present workload at ninety
percent utilization increases the utilization of the available
resources but can also cause a violation of a customer’s ser-
vice level agreement (SLA) with a small change in the work-
load. Conversely, the illustrative embodiments also recognize
that configuring a VM with excess resources, for example, for
operating the VM at only twenty percent utilization not only
reduces the chances of an SLA violation due to workload
changes but is also wasteful of the computing resources, and
therefore increases the resource requirement of processing
the workload.

The illustrative embodiments recognize that configuring
VMs in a data processing environment is a complex task that
often has to balance opposing objectives. For example, the
illustrative embodiments recognize that a VM can be config-
ured in a variety of ways for avoiding a violation. Each pos-
sible configuration has associated therewith a different
resource requirement of operating the VM or servicing a
workload. Similarly, the illustrative embodiments recognize
that a VM can also be reconfigured or relocated in a variety of
ways to correct a detected violation. Again, each reconfigu-
ration or relocation can potentially have a different resource
requirement. The illustrative embodiments recognize that
selecting a desirable configuration, a desirable placement, or
a combination thereof is a non-trivial problem.

US 9,176,762 B2

3

The illustrative embodiments used to describe the inven-
tion generally address and solve the above-described prob-
lems and other problems related to managing a data process-
ing environment. The illustrative embodiments provide a
system, and computer program product for hierarchical
thresholds-based VM configuration.

Placement of a VM includes the process of selecting a data
processing system on which to execute the VM. Selecting a
host data processing system fora VM is an example of placing
a VM. Selecting another VM that has to co-reside with a
subject VM on a host is another example manner of placement
of the subject VM.

With the scope of the illustrative embodiments, configur-
ing a VM includes allocating additional computing resources
(resources) to the VM, adjusting an amount of a resource
allocated to the VM, changing a priority associated with a
resource or a portion of the VM, manipulating a permission
associated with a resource or a portion of the VM, or a com-
bination thereof. Unless specified otherwise within the con-
text of an embodiment, configuration of a VM is placement
dependent. In other words, selecting a suitable placement for
a VM is a part of configuring the VM.

Within the scope of the illustrative embodiments, a viola-
tion includes any operation of a VM that causes a parameter of
the VM to exceed a threshold. For example, a processor
utilization of a VM can be a parameter that causes a process-
ing time for a transaction to exceed a threshold processing
time by one microsecond. The processor utilization param-
eter exceeding a utilization threshold can cause a transaction
processing time violation. As another example, a thread in a
VM performing more input/output (I/O) operations than an
1/0 threshold can be another example violation. A process
executing in a VM and causing more than a set number of
page faults during a period is another example of a violation
according to the illustrative embodiments.

According to the illustrative embodiments, a likelihood of
a violation is a likelihood that a given configuration of a VM
will cause a violation to occur. An illustrative embodiment
can address a violation or a likelihood of a violation by
manipulating a VM’s configuration, performing an operation
relative to the VM, or a combination thereof.

For example, an embodiment can mitigate a likelihood of a
violation by allocating more resources to the VM, thereby
manipulating a configuration of the VM. As another example,
an embodiment can mitigate a likelihood of a violation by
altering a placement of the VM, thereby manipulating a con-
figuration of the VM and performing an operation on the VM.
As another example, an embodiment can mitigate a likeli-
hood of a violation by reducing a priority of another VM on
the same host as the VM, thereby performing an operation
relative to the VM.

The illustrative embodiments are described with respect to
certain methods of computing violation values, manipulating
configurations, and performing operations relative to VMs
only as examples. Such descriptions are not intended to be
limiting on the illustrative embodiments.

Similarly, the illustrative embodiments are described with
respect to certain parameters, values, and data only as
examples. Such descriptions are not intended to be limiting
on the illustrative embodiments.

Furthermore, the illustrative embodiments may be imple-
mented with respect to any type of data, data source, or access
to a data source over a data network. Any type of data storage
device may provide the data to an embodiment of the inven-
tion, either locally at a data processing system or over a data
network, within the scope of the invention.

40

45

50

55

4

The illustrative embodiments are further described with
respect to certain applications only as examples. Such
descriptions are not intended to be limiting on the invention.
An embodiment of the invention may be implemented with
respect to any type of application, such as, for example,
applications that are served, the instances of any type of
server application, a platform application, a stand-alone
application, an administration application, or a combination
thereof.

An application, including an application implementing all
or part of an embodiment, may further include data objects,
code objects, encapsulated instructions, application frag-
ments, services, and other types of resources available in a
data processing environment. For example, a Java® object, an
Enterprise Java Bean (EJB), a servlet, or an applet may be
manifestations of an application with respect to which the
invention may be implemented. (Java and all Java-based
trademarks and logos are trademarks or registered trademarks
of Oracle and/or its affiliates).

An illustrative embodiment may be implemented in hard-
ware, software, or a combination thereof. An illustrative
embodiment may further be implemented with respect to any
type of data storage resource, such as a physical or virtual data
storage device, that may be available in a given data process-
ing system configuration.

The illustrative embodiments are described using specific
code, designs, architectures, layouts, schematics, and tools
only as examples and are not limiting on the illustrative
embodiments. Furthermore, the illustrative embodiments are
described in some instances using particular software, tools,
and data processing environments only as an example for the
clarity of the description. The illustrative embodiments may
be used in conjunction with other comparable or similarly
purposed structures, systems, applications, or architectures.

The examples in this disclosure are used only for the clarity
of the description and are not limiting on the illustrative
embodiments. Additional data, operations, actions, tasks,
activities, and manipulations will be conceivable from this
disclosure and the same are contemplated within the scope of
the illustrative embodiments.

Any advantages listed herein are only examples and are not
intended to be limiting on the illustrative embodiments. Addi-
tional or different advantages may be realized by specific
illustrative embodiments. Furthermore, a particular illustra-
tive embodiment may have some, all, or none of the advan-
tages listed above.

Although this disclosure includes a detailed description on
cloud computing, implementation of the teachings recited
herein are not limited to a cloud computing environment.
Rather, the illustrative embodiments are capable of being
implemented in conjunction with any other type of comput-
ing environment now known or later developed.

Cloud computing is a model of service delivery for
enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g. networks,
network bandwidth, servers, processing, memory, storage,
applications, virtual machines, and services) that can be rap-
idly provisioned and released with minimal management
effort or interaction with a provider of the service. This cloud
model may include at least five characteristics, at least three
service models, and at least four deployment models.

Generally, a cloud computing environment exhibits the
following characteristics—

On-demand self-service: a cloud consumer can unilaterally
provision computing capabilities, such as server time and
network storage, as needed automatically without requiring
human interaction with the service’s provider.

US 9,176,762 B2

5

Broad network access: capabilities are available over a
network and accessed through standard mechanisms that pro-
mote use by heterogeneous thin or thick client platforms (e.g.,
mobile phones, laptops, and PDAs).

Resource pooling: the provider’s computing resources are
pooled to serve multiple consumers using a multi-tenant
model, with different physical and virtual resources dynami-
cally assigned and reassigned according to demand. There is
a sense of location independence in that the consumer gener-
ally has no control or knowledge over the exact location of the
provided resources but may be able to specify location at a
higher level of abstraction (e.g., country, state, or datacenter).

Rapid elasticity: capabilities can be rapidly and elastically
provisioned, in some cases automatically, to quickly scale out
and rapidly released to quickly scale in. To the consumer, the
capabilities available for provisioning often appear to be
unlimited and can be purchased in any quantity at any time.

Measured service: cloud systems automatically control
and optimize resource use by leveraging a metering capability
at some level of abstraction appropriate to the type of service
(e.g., storage, processing, bandwidth, and active user
accounts). Resource usage can be monitored, controlled, and
reported providing transparency for both the provider and
consumer of the utilized service.

Service Models available in a cloud computing environ-
ment are as follows:

Software as a Service (SaaS): the capability provided to the
consumer is to use the provider’s applications running on a
cloud infrastructure. The applications are accessible from
various client devices through a thin client interface such as a
web browser (e.g., web-based e-mail). The consumer does
not manage or control the underlying cloud infrastructure
including network, servers, operating systems, storage, or
even individual application capabilities, with the possible
exception of limited user-specific application configuration
settings.

Platform as a Service (PaaS): the capability provided to the
consumer is to deploy onto the cloud infrastructure con-
sumer-created or acquired applications created using pro-
gramming languages and tools supported by the provider. The
consumer does not manage or control the underlying cloud
infrastructure including networks, servers, operating sys-
tems, or storage, but has control over the deployed applica-
tions and possibly application hosting environment configu-
rations.

Infrastructure as a Service (laaS): the capability provided
to the consumer is to provision processing, storage, networks,
and other fundamental computing resources where the con-
sumer is able to deploy and execute arbitrary software, which
can include operating systems and applications. The con-
sumer does not manage or control the underlying cloud infra-
structure but has control over operating systems, storage,
deployed applications, and possibly limited control of select
networking components (e.g., host firewalls).

Deployment Models available for cloud computing envi-
ronments are as follows:

Private cloud: the cloud infrastructure is operated solely for
an organization. It may be managed by the organization or a
third party and may exist on-premises or off-premises.

Community cloud: the cloud infrastructure is shared by
several organizations and supports a specific community that
has shared concerns (e.g., mission, security requirements,
policy, and compliance considerations). The community
cloud may be managed by the organizations or a third party
and may exist on-premises or off-premises.

10

15

20

25

30

35

40

45

50

55

60

65

6

Public cloud: the cloud infrastructure is made available to
the general public or a large industry group and is owned by
an organization selling cloud services.

Hybrid cloud: the cloud infrastructure is a composition of
two or more clouds (private, community, or public) that
remain unique entities but are bound together by standardized
or proprietary technology that enables data and application
portability (e.g., cloud bursting for load-balancing between
clouds).

A cloud computing environment is service oriented with a
focus on statelessness, low coupling, modularity, and seman-
tic interoperability. At the heart of cloud computing is an
infrastructure comprising a network of interconnected nodes.

Referring now to FIG. 1, a schematic of an example of a
cloud computing node is shown. Cloud computing node 100
is only one example of a suitable cloud computing node and
is not intended to suggest any limitation as to the scope of use
or functionality of embodiments of the invention described
herein. Regardless, cloud computing node 100 is capable of
being implemented and/or performing any of the functional-
ity set forth hereinabove.

In cloud computing node 100 there is a computer system/
server 102, which is operational with numerous other general
purpose or special purpose computing system environments
or configurations. Examples of well-known computing sys-
tems, environments, and/or configurations that may be suit-
able for use with computer system/server 102 include, but are
not limited to, personal computer systems, server computer
systems, thin clients, thick clients, hand-held or laptop
devices, multiprocessor systems, microprocessor-based sys-
tems, set top boxes, programmable consumer electronics,
network PCs, minicomputer systems, mainframe computer
systems, and distributed cloud computing environments that
include any of the above systems or devices, and the like.

Computer system/server 102 may be described in the gen-
eral context of computer system-executable instructions,
such as program modules, being executed by a computer
system. Generally, program modules may include routines,
programs, objects, components, logic, data structures, and so
on that perform particular tasks or implement particular
abstract data types. Computer systen/server 102 may be
practiced in distributed cloud computing environments where
tasks are performed by remote processing devices that are
linked through a communications network. In a distributed
cloud computing environment, program modules may be
located in both local and remote computer system storage
media including memory storage devices.

As shown in FIG. 1, computer system/server 102 in cloud
computing node 100 is shown in the form of a general-pur-
pose computing device. The components of computer sys-
tem/server 102 may include, but are not limited to, one or
more processors or processing units 106, a system memory
116, and a bus 108 that couples various system components
including system memory 116 to processor 106.

Bus 108 represents one or more of any of several types of
bus structures, including a memory bus or memory controller,
aperipheral bus, an accelerated graphics port, and a processor
orlocal bus using any of a variety of bus architectures. By way
of example, and not limitation, such architectures include
Industry Standard Architecture (ISA) bus, Micro Channel
Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video
Electronics Standards Association (VESA) local bus, and
Peripheral Component Interconnects (PCI) bus.

Computer system/server 102 typically includes a variety of
computer system readable media. Such media may be any
available media that is accessible by computer system/server

US 9,176,762 B2

7

102, and it includes both volatile and non-volatile media,
removable and non-removable media.

System memory 116 can include computer system read-
able media in the form of volatile memory, such as random
access memory (RAM) 118 and/or cache memory 120. Com-
puter system/server 102 may further include other removable/
non-removable, volatile/non-volatile computer system stor-
age media. By way of example only, storage system 122 can
be provided for reading from and writing to a non-removable,
non-volatile magnetic media (not shown and typically called
a“hard drive”). Although not shown, a magnetic disk drive for
reading from and writing to a removable, non-volatile mag-
netic disk (e.g., a “floppy disk™), and an optical disk drive for
reading from or writing to a removable, non-volatile optical
disk such as a CD-ROM, DVD-ROM or other optical media
can be provided. In such instances, each can be connected to
bus 108 by one or more data media interfaces. As will be
further depicted and described below, memory 116 may
include atleast one program product having a set (e.g., at least
one) of program modules that are configured to carry out the
functions of embodiments of the invention.

Program/utility 124, having a set (at least one) of program
modules 126, may be stored in memory 116 by way of
example, and not limitation, as well as an operating system,
one or more application programs, other program modules,
and program data. Each of the operating system, one or more
application programs, other program modules, and program
data or some combination thereof, may include an implemen-
tation of a networking environment. Program modules 126
generally carry out the functions and/or methodologies of
embodiments of the invention as described herein.

Computer system/server 102 may also communicate with
one or more external devices 104 such as a keyboard, a
pointing device, a display 114, etc.; one or more devices that
enable a user to interact with computer system/server 102;
and/or any devices (e.g., network card, modem, etc.) that
enable computer system/server 102 to communicate with one
or more other computing devices. Such communication can
occur via I/O interfaces 112. Still yet, computer system/server
102 can communicate with one or more networks such as a
local area network (LAN), a general wide area network
(WAN), and/or a public network (e.g., the Internet) via net-
work adapter 110. As depicted, network adapter 110 commu-
nicates with the other components of computer system/server
102 via bus 108. It should be understood that although not
shown, other hardware and/or software components could be
used in conjunction with computer system/server 102.
Examples, include, but are not limited to: microcode, device
drivers, redundant processing units, external disk drive
arrays, RAID systems, tape drives, and data archival storage
systems, etc.

Referring now to FIG. 2A, illustrative cloud computing
environment 202 is depicted. As shown, cloud computing
environment 202 comprises one or more cloud computing
nodes 100 with which local computing devices used by cloud
consumers, such as, for example, personal digital assistant
(PDA) or cellular telephone 204, desktop computer 206, lap-
top computer 208, and/or automobile computer system 210
may communicate. Nodes 100 may communicate with one
another. They may be grouped (not shown) physically or
virtually, in one or more networks, such as Private, Commu-
nity, Public, or Hybrid clouds as described hereinabove, or a
combination thereof. This allows cloud computing environ-
ment 202 to offer infrastructure, platforms and/or software as
services for which a cloud consumer does not need to main-
tain resources on a local computing device. It is understood
that the types of computing devices 204, 206, 208, and 210

20

40

45

8

shown in FIG. 2A are intended to be illustrative only and that
computing nodes 100 and cloud computing environment 202
can communicate with any type of computerized device over
any type of network and/or network addressable connection
(e.g., using a web browser).

Referring now to FIG. 2B, a set of functional abstraction
layers provided by cloud computing environment 202 (FIG.
2A) is shown. It should be understood in advance that the
components, layers, and functions shown in FIG. 2B are
intended to be illustrative only and embodiments of the inven-
tion are not limited thereto. As depicted, the following layers
and corresponding functions are provided:

Hardware and software layer 252 includes hardware and
software components. Examples of hardware components
include mainframes, in one example IBM® zSeries® sys-
tems; RISC (Reduced Instruction Set Computer) architecture
based servers, in one example IBM pSeries® systems; IBM
xSeries® systems; IBM BladeCenter® systems; storage
devices; networks and networking components. Examples of
software components include network application server
software, in one example IBM WebSphere® application
server software; and database software, in one example IBM
DB2® database software. (IBM, zSeries, pSeries, xSeries,
BladeCenter, WebSphere, and DB2 are trademarks of Inter-
national Business Machines Corporation registered in many
jurisdictions worldwide)

Virtualization layer 254 provides an abstraction layer from
which the following examples of virtual entities may be pro-
vided: virtual servers; virtual storage; virtual networks,
including virtual private networks; virtual applications and
operating systems; and virtual clients.

In one example, management layer 256 may provide the
functions described below. Resource provisioning provides
dynamic procurement of computing resources and other
resources that are utilized to perform tasks within the cloud
computing environment. Metering and Pricing provide cost
tracking as resources are utilized within the cloud computing
environment, and billing or invoicing for consumption of
these resources. In one example, these resources may com-
prise application software licenses. Security provides identity
verification for cloud consumers and tasks, as well as protec-
tion for data and other resources. User portal provides access
to the cloud computing environment for consumers and sys-
tem administrators. Service level management provides
cloud computing resource allocation and management such
that required service levels are met. Service Level Agreement
(SLA) planning and fulfillment provide pre-arrangement for,
and procurement of, cloud computing resources for which a
future requirement is anticipated in accordance with an SLA.

Workloads layer 258 provides examples of functionality
for which the cloud computing environment may be utilized.
Examples of workloads and functions which may be provided
from this layer include: mapping and navigation; software
development and lifecycle management; virtual classroom
education delivery; data analytics processing; transaction
processing; and application 259.

VM 255 is an example VM in virtual server 253 in virtu-
alization layer 254. An embodiment manipulates the configu-
ration of VM 255 as described herein. Application 259 in
workloads layer 258 is an example application implementing
an embodiment.

The hardware in FIGS. 1, 2A, and 2B may vary depending
on the implementation. Other internal hardware or peripheral
devices, such as flash memory, equivalent non-volatile
memory, or optical disk drives and the other computer usable
storage devices, may be used in addition to or in place of
certain hardware depicted in FIGS. 1, 2A, and 2B. In addition,

US 9,176,762 B2

9

the processes of the illustrative embodiments may be applied
to a multiprocessor data processing system.

With reference to FIG. 3, this figure depicts a block dia-
gram of an example hierarchy in a data processing environ-
ment using which configuration resource requirement thresh-
olds for various VM configurations, and the violation values
associated there with, can be computed in accordance with an
illustrative embodiment. All or part of hierarchy 300 can be
configured as a virtualized data processing environment to
serve as a cloud. VM 302 is analogous to VM 235 in FIG. 2B.

Hierarchy 300 is a simplified depiction of a virtualized data
processing environment in which several VMs are distributed
across several host data processing systems. The host data
processing systems are arranged in one or more clusters, and
several clusters comprise a data center. Those of ordinary skill
in the art will be able to expand or otherwise adapt hierarchy
300 to map to a particular data processing environment.

VM 302 labeled “VM 1” is one of x number of VMs
configured to execute on host 304. Host 304 labeled “Host 2”
is one of m number of hosts available in hierarchy 300. Host
304 participates in cluster 306 labeled “cluster 1. Clusters 1
through n are configured in data center 308, labeled “data
center 1. Data center 308 is one of p number of data centers
that are organized in a similar manner.

Assume that an embodiment has to change the configura-
tion of VM 302, such as to avoid a likelihood of violation by
the present configuration of VM 302, or to rectify a violation
in VM 302. According to an embodiment, the configuration of
VM 302 can be modified in several different ways, each way
of modifying the configuration having a different resource
requirement.

As described earlier, a likelihood of a violation, or risk, is
a likelihood that a given configuration of a VM will cause a
violation to occur. A violation value, or a risk score, is a
numerical measure of a probability of a violation, such as a
violation from capacity overuse or under-use in the virtual
environment. Furthermore, the violation value can be com-
puted by analyzing the resource utilization data, including
historical utilization data, current utilization data, or fore-
casted utilization data.

The illustrative embodiments recognize that designing an
optimization plan for a virtualized data processing environ-
ment to minimize the violation values is a challenging task in
capacity planning. For example, the resource requirement of
a likelihood of violation increases significantly from the vir-
tual machine level of hierarchy 300 that includes VM 302, to
the host machine level of hierarchy 300 that includes host
304, to the cluster level of hierarchy 300 that includes cluster
306, to the cloud or data center level of hierarchy 300 that
includes data center 308. Accordingly, designing an optimi-
zation plan to minimize the likelihood of violation at each
level is also a challenging task in capacity planning.

An embodiment can calculate the violation value for each
level of hierarchy 300. The embodiment can relate the viola-
tion values at various levels with each other using a suitable
mathematical function. Of course, violation values and their
relationships are dependent on the particular implementation
of hierarchy 300. Generally, violation values are related to
each other in hierarchical manner cascading from the virtual
machine level, to the host level, to the cluster level, to the data
center level, and any other levels prevailing in a given imple-
mentation, via a mathematical function. For example, in one
embodiment, the violation value of a host is the sum of vio-
lation values of all VMs placed on that host, the violation
value of a cluster is the sum of the violation values of all the
hosts in that cluster, and the violation value of a data center is
the sum of the violation values of all clusters in the data

10

15

20

25

30

35

40

45

50

55

60

65

10

center. Any change in the violation value of a VM results in a
change in the violation values of the corresponding host,
cluster, and data center.

An embodiment also recognizes that the options of placing
a VM on a different host, a different cluster, or a different data
center can each have a different associated likelihood of vio-
lation and resource requirement. By hierarchically organiz-
ing the violation values and resource requirement thresholds
from the VM level to the data center level of hierarchy 300, an
optimization plan can minimize the likelihood of violation
and the associated resource requirement when considering
moving a VM in the virtualized data processing environment.

For example, suppose that the resource utilization of VM
302 increases suddenly while operating in the depicted loca-
tion in hierarchy 300. As the illustrative embodiments have
recognized, the resource requirement thresholds for address-
ing that increased utilization progressively increases when
considering a solution in the VM level, in the host level, in the
cluster level, and in the data center level of hierarchy 300.

For example, an embodiment can modify the configuration
of VM 302 such that additional or different resources are
allocated to VM 302, with VM 302 continuing to execute in
host 304. In such a reconfiguration process, the resource
requirement of reconfiguration includes at least the additional
or different resources, such as processor, memory, data stor-
age capacity, network traffic capacity, and licenses. The
resource requirement of this reconfiguration process can fur-
ther include the resource equivalent of deteriorated perfor-
mance of another VM executing on host 304, such as the VM
labeled “VM 27, the resource equivalent of depleted resource
reserves in host 304, the time expended in reconfiguring VM
302, any downtime required to reconfigure VM 302, resource
equivalent of the effects of migrating another VM away from
host 304, such as moving “VM x” from host 304 to “host m”.

Another example of a resource requirement associated
with reconfiguring VM 302 on host 304 includes a cost of
violating a policy or the resource requirements for adjusting a
policy. For example, a policy may require that two specified
workloads should not execute on the same host. Keeping VM
302 on host 304 may cause such a policy to be violated, such
as when “VM 2” is expected to execute a conflicting work-
load. A cost of avoiding violating such a policy may be a
resource requirement of relocating “VM 2” to “Host m”.
Another resource requirement of avoiding violating such a
policy may be an increase in the licensing costs. For example,
two VMs may be executing on host 304 to share a license.
Moving one ofthe VMs to another host may cause the VMs to
use two separate licenses, thereby increasing the cost of
licensing.

As another example, an embodiment can modify the con-
figuration of VM 302 such that the placement of VM 302 is
changed from host 304 to “host 1”. An embodiment can
change the placement with or without additional or different
resources being allocated to VM 302. In such a reconfigura-
tion process, the resource requirement of reconfiguration
includes at least the resource requirement of migrating VM
302 to “host 17, and the additional or different resources, if
any.

The resource requirement of this reconfiguration process
can further include the resource equivalent of deteriorated
performance of another VM executing on “host 17, the
amount of depleted resource reserves in “host 17, the time
expended in reconfiguring VM 302, the downtime required to
reconfigure VM 302, migration cost such as resource require-
ments or differences for migrating VM 302 to “host 17, and
resource requirement of migrating another VM away from
“host 1” to accommodate VM 302 thereon.

US 9,176,762 B2

11

Some other examples of migration costs include resource
requirement of increased data traffic on the network during
the migration; resource requirement of increased data traffic
due to changes in application affinities from the migration;
utilization of processor, memory, and other resources for the
migration; downtime for hosts, clusters, cluster groups,
routes, and other resources for performing the migration; and
resource requirement of re-optimizing hosts, clusters, cluster
groups, routes, and other resources upon performing the
migration. Migration of a VM also incurs administration
costs for manual and automated tasks associated with migra-
tion. For example, migrating a VM may require approvals,
changes to workflows, notifications, conflicts resolutions, or
reconfigurations, all of which require some resources and
therefore add cost to the migration.

Additional costs from migration can include increased
failover resources or redundant resources that may be
required to accommodate the additional migrated VM. Addi-
tional infrastructure consumption is another cost factor in
migration of a VM. For example, in a particular implementa-
tion, the failover/high-availability configuration may include
high-end servers, hypervisor, or a combination of these and
other resources. Cost of migrating the VM to a high-end
server where 99.9 percent up-time is guaranteed may be sig-
nificantly more than a low-end server where 99 percent up-
time was guaranteed for the VM before the migration.

Similarly, a configuration of a VM can be changed, a place-
ment of a VM can be changed, or both, at different levels of
hierarchy 300 to avoid a likelihood of violation or to address
a violation that has already occurred. VM 302 can be recon-
figured while remaining at host 304; VM 302 can be recon-
figured, migrated to another host, or both; VM 302 can be
reconfigured, migrated to another cluster, or both; or VM 302
can be reconfigured, migrated to another data center, or both.
In other words, a change in VM 302 can include a change that
occurs at different levels of hierarchy 300, to wit, VM level,
host level, cluster level, or data center level according to
simplified hierarchy 300. In addition, these changes to VM
302 can trigger similar changes to other VMs at different
levels of the hierarchy.

Depending on the level of hierarchy 300 at which a change
occurs in response to a change in the configuration of VM
302, placement of 302, configuration of another VM, and
placement of another VM, the resource requirement of avoid-
ing the likelihood of violation or addressing an existing vio-
lation can be different. Generally, the resource requirement
increases as changes are made from leaf nodes—the VMs, to
nodes higher up in hierarchy 300 towards the root of hierarchy
300.

As an example, consider that a response time of an appli-
cation executing on VM 1 has increased by 10 micro seconds,
requiring some change in the VM 1’s configuration. As a first
option, if the resource usage of VM 1 is analyzed and
increased in-place, such as by allocating addition CPU or
memory to VM 1, the resource requirement, or cost, incurred
is “cost 1”. As a second option, if additional application
licenses are obtained and VM and 3 are configured to operate
in parallel with VM 1, the increase in cost is due to increase in
the CPU and memory usage (Cost 1) plus increase in the cost
of licenses (cost 2). As a third option, if VM 1 is migrated to
another under-utilized host in the same cluster, the cost
includes cost of migration (cost 3), and cost of resources at the
new host (cost 4). The migration cost may also include some
part of costs 1 and 2 pre-migration or during migration, such
as when uninterrupted service is required (cost 1, 2, 3, and 4).
Migrating VM 1 to another cluster additionally incurs a cost
of'additional administration and policy changes (cost 5), fora

15

40

45

12

likely total cost of costs 1+2+3+4+5 under certain circum-
stances. Migrating VM 1 to a different data center can incur,
among other costs, a cost of shut-down, and restart, and
downtime of certain data center level resources, such as rout-
ers (cost 6). Under certain circumstances, the total cost of
migrating to a different data center can be costs 1+2+3+4+
5+6 or some factor thereof.

Similarly, consider another example where the availability
requirement of a VM has changed from 99% availability to
99.9% availability. Migrating the VM to a high-end server
where 99.9% availability can be guaranteed has a different
resource requirement than running parallel replicas of VM on
two low-end hosts each of which individually offering 99%
availability and collectively offering 99.9% availability. Con-
figuring two mid or low-end servers with hypervisor level
failover support translates to a yet different resource require-
ment. Configuring the two mid or low-end servers with hard-
ware failover support is a still different resource requirement.
As another option, which incurs a different higher resource
requirement, the VM can be maintained on low-end servers as
multiple copies in different clusters. Such a solution requires
additional VMSs, synchronization, and migration costs but
may save infrastructure support costs and license utilization
costs.

An embodiment collects fixed or static resource require-
ments for making configuration and placement changes at
various levels of hierarchy 300. The embodiment creates
formulae for computing certain other variable resource
requirements associated with making configuration and
placement changes, such as resource requirements that
change with time or type of change, at various levels of
hierarchy 300. The embodiment thus creates a resource
requirement thresholds hierarchy having threshold levels,
and corresponding to the levels in hierarchy 300.

The resource requirement thresholds hierarchy is helpful in
a decision making process, such as one implemented in appli-
cation 259 in FIG. 2B, to determine a preferred manner of
making configuration and placement changes for managing
violations. The resource requirement considerations of
reconfiguring VM 302 might place VM 302 anywhere in
hierarchy 300. The likelihood of violation in VM 302’°s new
configuration, however, is also an optimization factor in
determining a suitable placement of VM 302.

For example, corresponding to hierarchy 300, a violation
value thresholds hierarchy defines a likelihood of a violation
in a VM at each level in hierarchy 300. Assume that R ., R ,,
R,, and R, are violation values of the possible reconfigura-
tions 0of VM 302 at the data center, cluster, host, and VM levels
of hierarchy 300. Costs C,_, C_;, C,, and C,,,,, are costs, or
resource requirements, in those reconfigurations of VM 302
at the data center, cluster, host, and VM levels of hierarchy
300. If VM 302 is reconfigured across data centers in the data
center level, an optimization model according to an embodi-
ment ensures that R ;_is less than a threshold forR ,_, and C
is less than a threshold for C,. in VM 302’s new configura-
tion.

Likewise, if VM 302 is reconfigured across clusters in the
cluster level, an optimization model according to an embodi-
ment ensures that R ; is less than a threshold for R ;, and C_,
is less than a threshold for C_,in VM 302’s new configuration.
Similarly, if VM 302 is reconfigured across hosts in the hosts
level, an optimization model according to an embodiment
ensures that R, is less than a threshold for R,,, and C,, is less
than a threshold for C,, in VM 302’s new configuration. [f VM
302 is reconfigured in the VM level, an optimization model

US 9,176,762 B2

13
according to an embodiment ensures that R ,, is less than a
threshold for R ,,,, and C,, is less than a threshold for C , in
VM 302’s new configuration.

Depending on which reconfiguration yields comparatively
better violation value and resource requirement for VM 302
and other affected VMs, the optimization model of an
embodiment selects a suitable reconfiguration alternative for
VM 302. In an example circumstance, a violation may be a
violation of a term of an SLA. Given a violation value thresh-
olds hierarchy and a resource requirement thresholds hierar-
chy, even the lowest resource requirement of addressing the
violation or the likelihood of the violation may exceed the
cost incurred by the violation. In such a case, an embodiment
attempts to reduce the violation value of VM 302 in one or
more levels, resource requirement of reconfiguration in one
or more levels, or both, such that a combination of the revised
violation value and the revised resource requirement of
reconfiguration for reconfiguration in some level of hierarchy
300 is acceptable according to the SLA. An optimization plan
according to an embodiment then selects the reconfiguration
option where the violation value and the resource requirement
of reconfiguration are acceptable.

In another example circumstance, the violation may be a
violation of a policy in a set of policies {P,, P, ..., P,}. Bach
policy in the set has a corresponding weight in a set of weights
{Wy, wy, ..., W, A likelihood of violating a policy P, is
denoted by r, which is dependent on W, for policy P,. Like-
lihood of violating a policy by a given configuration of VM
302 is Zr, for the set of policies. Zr,, yields a positive value for
certain weight-policy pairs, and a negative value for certain
weight-policy pairs. The actual violation value of VM 302 is
therefore the positive number minus the negative number. An
embodiment uses this final violation value to assess whether
reconfiguration of VM 302 is warranted.

With reference to FIG. 4A, this figure depicts a block
diagram of an application configuration for hierarchical
resource requirement thresholds-based VM configuration
manipulation in accordance with an illustrative embodiment.
Application 402 can be implemented as application 259 in
FIG. 2B.

Application 402 receives configuration and placement
information 404 about one or more VMs operating in a vir-
tualized data processing environment. In one example
embodiment, information 404 pertains to VM 302 in FIG. 3.
In another embodiment, information 404 pertains to VM 302
and “VM 1” in FIG. 3. In another embodiment, information
404 pertains to VM 302 and another VM executing on a host
in “cluster n” (not shown). In another embodiment, informa-
tion 404 pertains to all or a subset of VMs operating in
hierarchy 300 in FIG. 3. In one embodiment, application 402
also receives hierarchy 300 in FIG. 3 as an input (not shown).

Application 402 further receives information about viola-
tion 406 as another input. Violation 406, when present can be
a violation in one of the VMs whose information is provided
in information 404. Note that in one embodiment, application
402 receives information about violation 406 when an actual
violation exists in a given hierarchy.

Application 402, alternatively or in conjunction with vio-
lation 406, receives violation value 408 about a VM whose
configuration information is provided in information 404. For
example, in one embodiment, violation value 408 fora VM is
available to application 402 when the VM has not yet caused
aviolation, so that application 402 can determine whether the
VM can be better configured so as to reduce the violation
value. As another example, in another embodiment, violation
value 408 is available to application 402 when information
about violation 406 is also available for that VM, so that

40

45

55

14

application 402 can determine whether the factors contribut-
ing to violation value 408 and violation 406 are same or
different. In other words, using violation 406 and violation
value 408 together, application 402 can determine whether
the VM in question has a propensity for certain types of
violations that are predictable by one or more benchmark
workloads.

Violation value computing component 410 provides viola-
tion value 408 of a VM to application 402. In one embodi-
ment, component 410 is included in application 402, and
application 402 computes violation value 408 instead of
receiving as an input.

Application 402 further receives resource requirement
thresholds hierarchy 412. Resource requirement thresholds
hierarchy 412 is a method of computing the resource require-
ment of changing the configuration or placement of a VM
from one position in a given hierarchy, such as hierarchy 300
in FIG. 3, to another position in the hierarchy. Resource
requirement thresholds hierarchy 412 can take the form of
logic, formulae, table, or code for computing the resource
requirements for changes involving various levels of a given
hierarchy.

Using a combination of inputs 44, 46, 408, and 412, appli-
cation 402 outputs recommendation 414. Recommendation
414 provides a recommended configuration change, place-
ment change, or both, fora VM that has experienced violation
406, has violation value 408, or both.

With reference to FIG. 4B, this figure depicts line graphs of
example methods for computing violation values in accor-
dance with an illustrative embodiment. Graphs 450 and 452
can be generated and/or used by violation value computing
component 410 for computing violation value 408 in FIG.
4A.

In an example method of computing violation value, an
embodiment executes a benchmark workload ona VM having
agiven configuration. The embodiment measures one or more
parameters of the VM during the performance of the work-
load. Comparing the measurements with corresponding
thresholds, the embodiment determines a proportion of a
parameter exceeding a corresponding threshold versus the
parameter remaining within the threshold. The embodiment
uses the proportion to determine a violation value of the VM’s
configuration.

For example, as depicted in graph 450 generated using a
given VM with a given configuration, and using the processor
utilization as an example parameter, an embodiment executes
an example benchmark workload comprising ten tasks of
varying complexities. The embodiment determines that two
out of the ten workloads causes the processor utilization to
exceed a threshold set at thirty percent as shown. In one
example computation of a violation value for the VM, as
depicted in graph 450, the embodiment assesses a violation
value of 0.2 because two out of ten tasks caused the parameter
to exceed the corresponding threshold.

Now consider that the threshold is not merely a percentage
threshold but a combination of a percentage of the processor
utilization and an amount of time spent at a certain utilization.
Again using the above example benchmark workload, and as
depicted in graph 452, an embodiment determines that the
total benchmark workload executed for two seconds, but the
two tasks that caused the utilization parameter to exceed
thirty percent maintained that utilization level for a total of
one second. Thus, using graph 452, the embodiment assesses
a violation value of 0.5 because the utilization parameter
exceeded a set value for one out of two seconds, or fifty

US 9,176,762 B2

15

percent of the time. Many other ways of calculating a viola-
tion value are contemplated within the scope of the illustrative
embodiments.

With reference to FIG. 5, this figure depicts a flowchart of
an example process of calculating a violation value fora VM
in accordance with an illustrative embodiment. Process 500
can be implemented in violation value computing component
410 in FIG. 4, as a part of application 402 or as supplying an
input to application 402 in FIG. 4.

Process 500 begins by receiving a configuration of a VM
(step 502). Process 500 executes a benchmark workload on
the VM (step 504). The benchmark workload can be config-
ured in any suitable manner according to a given implemen-
tation within the scope of the illustrative embodiments.

Process 500 identifies a parameter of the VM that exceeds
athreshold (step 506). Process 500 determines whether more
than one parameters of the VM exceed their corresponding
benchmarks (step 508).

If more parameters have exceeded their corresponding
thresholds (“Yes” path of step 508), process 50 returns to step
506. If all parameters that exceed their corresponding thresh-
olds have been identified (“No” path of step 508), process 500
calculates a violation value of the VM using those param-
eters’ values (step 510). Elsewhere, this disclosure describes
at least two ways of calculating the violation value in step
510.

Process 500 outputs the violation value (step 512). Process
500 ends thereafter.

With reference to FIG. 6, this figure depicts a flowchart of
an example process of hierarchical resource requirement
thresholds-based VM configuration for reducing a likelihood
of a violation in accordance with an illustrative embodiment.
Process 600 can be implemented in application 402 in FIG. 4.

Process 600 begins by receiving or computing a violation
value for a VM (step 602). Process 600 determines whether
the violation value exceeds a threshold level of likelihood of
a violation (step 604).

Ifthe violation value does not exceed the threshold level of
likelihood of a violation (“No” path of step 604), process 600
ends thereafter.

If the violation value exceeds the threshold level of likeli-
hood of a violation (“Yes” path of step 604), process 600
identifies a parameter, or a combination of parameters, of the
VM, which contribute to the VM’s violation value (step 606).
Process 600 identifies a resource or operation to improve the
parameter and reduce the violation value (step 608).

For example, a benchmark workload may measure trans-
action processing time as one parameter. In a given virtual-
ized data processing environment where the violation value is
determined, another parameter may be number of VMs
accessing a license database. A VM may encounter a situation
where the transaction processing time exceeds a threshold
due to a number of VM’s accessing the same license database
in that environment may be competing for the same license
with each other. Consequently, the VM’s violation value
exceeds the threshold violation value level.

As one solution in step 608, an embodiment identifies an
additional license—a resource—that can be allocated to a
VM, added to the license pool, or both. Alternatively, an
embodiment identifies another cluster that uses a different
license database, where the contention for the license is less
than in the present cluster. Accordingly, in step 608, the
embodiment decides to move the VM to the other cluster—an
operation relative to the VM—to reduce the violation value of
the VM. Alternatively, another embodiment can both allocate

5

10

15

20

25

30

35

40

45

50

55

60

65

16

a license—a resource—to the VM, and decide to move the
VM to the other cluster—perform an operation relative to the
VM-—in step 608.

Process 600 determines a resource requirement of the
operation using the resource requirement thresholds hierar-
chy (step 610). Process 600 determines whether the new
resource requirement of operating the VM in the revised
configuration is within a resource requirement threshold (step
612).

If process 600 determines that the new resource require-
ment exceeds the resource requirement threshold (“No” path
of'step 612), process 600 can return to step 608 and try to find
a different resource or operation to improve the parameter.
Alternatively, such as when no alternative resources or opera-
tions are helpful in improving the parameter, process 600 can
return to step 606 and select a different parameter or combi-
nation of parameters to manipulate for reducing the violation
value.

If the new resource requirement is within the resource
requirement threshold (“Yes” path of step 612), process 600
revises the configuration, with or without revising the place-
ment, of the VM based on the selected resources or operations
corresponding to the new cost (step 614). Process 600 outputs
the revised configuration, placement, or both, for the VM,
such as in the manner of recommendation 414 in FIG. 4 (step
616). Process 600 ends thereafter.

With reference to FIG. 7, this figure depicts a flowchart of
an example process of hierarchical resource requirement
thresholds-based VM configuration for removing a violation
in accordance with an illustrative embodiment. Process 700
can be implemented in application 402 in FIG. 4.

Process 700 begins by receiving an indication of a violation
in a VM of a given configuration (step 702). Process 700
identifies a parameter, or a combination of parameters, of the
VM, which contribute to the violation (step 704). Process 700
identifies a resource or operation to improve the parameter
and remove the violation (step 706).

For example, suppose that one parameter involved in the
violation were transaction processing time for a transaction
and another parameter were a number of VMs accessing a
license database. A VM may violate a policy when the trans-
action processing time exceeds a threshold because a number
of VM’s accessing the same license database in that environ-
ment may be competing for the same license with each other.

As one solution in step 706, an embodiment identifies an
additional license resource that can be allocated to a VM or
added to the license database. Alternatively, an embodiment
identifies another cluster that uses a different license data-
base, where the contention for the license is less than in the
present cluster. Accordingly, in step 706, the embodiment
decides to perform a migration operation on the VM to move
the other cluster. As in process 600 in FIG. 6, an embodiment
can both manipulate a resource and perform an operation
relative to the VM in step 706.

Process 700 determines a resource requirement of the
operation using the resource requirement thresholds hierar-
chy (step 708). Process 700 determines whether the new
resource requirement of operating the VM in the revised
configuration is within a resource requirement threshold (step
710).

If process 700 determines that the new resource require-
ment exceeds the resource requirement threshold (“No” path
of'step 710), process 700 can return to step 706 and try to find
a different resource or operation to improve the parameter.
Alternatively, such as when no alternative resources or opera-
tions are helpful in improving the parameter, process 700 can

US 9,176,762 B2

17

return to step 704 and select a different parameter or combi-
nation of parameters to manipulate for removing the viola-
tion.

If the new resource requirement is within the resource
requirement threshold (“Yes” path of step 710), process 700
revises the configuration, with or without revising the place-
ment, of the VM based on the selected resources or operations
corresponding to the new cost (step 712). Process 700 outputs
the revised configuration, placement, or both, for the VM,
such as in the manner of recommendation 414 in FIG. 4 (step
714). Process 700 ends thereafter.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or por-
tion of code, which comprises one or more executable
instructions for implementing the specified logical
function(s). It should also be noted that, in some alternative
implementations, the functions noted in the block may occur
out of the order noted in the figures. For example, two blocks
shown in succession may, in fact, be executed substantially
concurrently, or the blocks may sometimes be executed in the
reverse order, depending upon the functionality involved. It
will also be noted that each block of the block diagrams
and/or flowchart illustration, and combinations of blocks in
the block diagrams and/or flowchart illustration, can be
implemented by special purpose hardware-based systems
that perform the specified functions or acts, or combinations
of special purpose hardware and computer instructions.

Thus, a system, and computer program product are pro-
vided in the illustrative embodiments for hierarchical thresh-
olds-based VM configuration. Using an embodiment of the
invention, an actual violation can be removed, or a likelihood
of'a violation in the VM can be mitigated, by determining the
hierarchical resource requirement thresholds of various solu-
tions and selecting a suitable solution based on those thresh-
olds. An embodiment can also be used for determining an
initial configuration of a VM, such that the initial configura-
tion satisfies a threshold violation value level when deployed.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method,
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, microcode, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
or more computer readable storage device(s) or computer
readable media having computer readable program code
embodied thereon.

Any combination of one or more computer readable stor-
age device(s) or computer readable media may be utilized.
The computer readable medium may be a computer readable
signal medium or a computer readable storage medium. A
computer readable storage device may be an electronic, mag-
netic, optical, electromagnetic, or semiconductor system,
apparatus, or device, or any suitable combination of the fore-
going. More specific examples (a non-exhaustive list) of the
computer readable storage device would include the follow-
ing: a portable computer diskette, a hard disk, a random
access memory (RAM), aread-only memory (ROM), an eras-
able programmable read-only memory (EPROM or Flash
memory), a portable compact disc read-only memory (CD-

10

15

20

25

30

35

40

45

50

55

60

65

18

ROM), an optical storage device, a magnetic storage device,
orany suitable combination of the foregoing. In the context of
this document, a computer readable storage device may be
any tangible device that can store a program for use by or in
connection with an instruction execution system, apparatus,
or device. The terms “computer usable storage device,” and
“storage device” do not encompass a signal propagation
medium, any description in this disclosure to the contrary
notwithstanding.

Program code embodied on a computer readable storage
device or computer readable medium may be transmitted
using any appropriate medium, including but not limited to
wireless, wireline, optical fiber cable, RF, etc., or any suitable
combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like, conventional procedural program-
ming languages, such as the “C” programming language or
similar programming languages, and mainframe program-
ming languages such as REXX, Assembly, and Cobol. The
program code may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software pack-
age, partly on the user’s computer and partly on a remote
computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the
user’s computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or
the connection may be made to an external computer (for
example, through the Internet using an Internet Service Pro-
vider).

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to one or more proces-
sors of one or more general purpose computers, special pur-
pose computers, or other programmable data processing
apparatuses to produce a machine, such that the instructions,
which execute via the one or more processors of the comput-
ers or other programmable data processing apparatuses, cre-
ate means for implementing the functions/acts specified in the
flowchart and/or block diagram block or blocks.

These computer program instructions may also be stored in
one or more computer readable storage devices or computer
readable that can direct one or more computers, one or more
other programmable data processing apparatuses, or one or
more other devices to function in a particular manner, such
that the instructions stored in the one or more computer read-
able storage devices or computer readable medium produce
an article of manufacture including instructions which imple-
ment the function/act specified in the flowchart and/or block
diagram block or blocks.

The computer program instructions may also be loaded
onto one or more computers, one or more other program-
mable data processing apparatuses, or one or more other
devices to cause a series of operational steps to be performed
on the one or more computers, one or more other program-
mable data processing apparatuses, or one or more other
devices to produce a computer implemented process such that
the instructions which execute on the one or more computers,
one or more other programmable data processing appara-

US 9,176,762 B2

19

tuses, or one or more other devices provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising,” when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
elements, components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims
below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiments were chosen and
described in order to best explain the principles of the inven-
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated.

What is claimed is:
1. A computer usable program product comprising a com-
puter usable storage device including computer usable code
for hierarchical thresholds-based configuring of a virtual
machine (VM), the computer usable code comprising:
computer usable code to cause a processor to identify,
responsive to a performance parameter of the VM
exceeding a threshold, an operation to be performed
relative to the VM

computer usable code to cause the processor to determine,
using a resource requirement thresholds hierarchy, a
resource requirement of performing the operation,
wherein the resource requirement thresholds hierarchy
is usable for computing the resource requirement of the
operation when the operation is performed at a specified
level in a hierarchy within a virtualized data processing
environment (environment) where the VM is executing,
the hierarchy within the environment defines a logical
virtualization infrastructure within a data center;

computer usable code to cause the processor to determine,
using a violation value thresholds hierarchy, a violation
value resulting from performing the operation, wherein
the violation value thresholds hierarchy is usable for
computing the violation value resulting from the opera-
tion when the operation is performed at the specified
level in the hierarchy within the environment where the
VM is executing; and

computer usable code to cause the processor to revise,
responsive to the resource requirement not exceeding a
resource requirement threshold and the violation value
not exceeding a violation value threshold, a first con-
figuration of the VM to a second configuration of the
VM, wherein the second configuration includes a result
of performing the operation relative to the VM at the
specified level in the hierarchy.

15

20

25

30

35

40

45

55

65

20

2. The computer usable program product of claim 1, further
comprising:

computer usable code to cause the processor to receive a

description of the hierarchy within the environment, the
hierarchy including a plurality of levels of data process-
ing systems in parent-child relationships;

computer usable code to cause the processor to create the

resource requirement thresholds hierarchy, such that the
resource requirement thresholds hierarchy includes a
plurality of resource requirement threshold levels,
wherein a resource requirement threshold level in the
plurality of resource requirement threshold levels corre-
sponds to a level of data processing system in the plu-
rality of levels of data processing systems in the hierar-
chy.

3. The computer usable program product of claim 2,
wherein the resource requirement threshold level includes a
static resource requirement of performing the operation at the
level in the hierarchy, and a variable resource requirement of
performing the operation at the level in the hierarchy.

4. The computer usable program product of claim 1,
wherein the performance parameter exceeding the threshold
corresponds to a first violation value of the VM configured
according to the first configuration.

5. The computer usable program product of claim 1,
wherein the computer usable code is stored in a computer
readable storage device in a data processing system, and
wherein the computer usable code is transferred over a net-
work from a remote data processing system.

6. The computer usable program product of claim 1,
wherein the computer usable code is stored in a computer
readable storage device in a server data processing system,
and wherein the computer usable code is downloaded over a
network to a remote data processing system for use in a
computer readable storage device associated with the remote
data processing system.

7. A data processing system for hierarchical thresholds-
based configuring of a virtual machine (VM), the data pro-
cessing system comprising:

a storage device, wherein the storage device stores com-

puter usable program code; and

a processor, wherein the processor executes the computer

usable program code, and wherein the computer usable
program code comprises:
computer usable code for identifying, responsive to a per-
formance parameter of the VM exceeding a threshold, an
operation to be performed relative to the VM;

computer usable code for determining, using a resource
requirement thresholds hierarchy, a resource require-
ment of performing the operation, wherein the resource
requirement thresholds hierarchy is usable for comput-
ing the resource requirement of the operation when the
operation is performed at a specified level in a hierarchy
within a environment where the VM is executing, the
hierarchy within the environment defines a logical vir-
tualization infrastructure within a data center;

computer usable code for determining, using a violation
value thresholds hierarchy, a violation value resulting
from performing the operation, wherein the violation
value thresholds hierarchy is usable for computing the
violation value resulting from the operation when the
operation is performed at the specified level in the hier-
archy within the environment where the VM is execut-
ing; and

computer usable code for revising, responsive to the

resource requirement not exceeding a resource require-
ment threshold and the violation value not exceeding a

US 9,176,762 B2

21

violation value threshold, a first configuration of the VM
to a second configuration of the VM, wherein the second
configuration includes a result of performing the opera-
tion relative to the VM at the specified level in the hier-
archy.

8. The computer usable program product of claim 1, further
comprising:
computer usable code to cause the processor to execute a
benchmark workload on the VM, wherein the perfor-
mance parameter exceeding the threshold responsive to
the executing the benchmark workload is indicative of a
likelihood of a violation in the VM; and

computer usable code to cause the processor to compute a
first violation value for the VM based on the perfor-
mance parameter exceeding the threshold.

9. The computer usable program product of claim 1, further
comprising:
computer usable code to cause the processor to receive a
description of the hierarchy within the environment, the
hierarchy including a plurality of levels of data process-
ing systems in parent-child relationships; and

computer usable code to cause the processor to create the
violation value thresholds hierarchy, such that the vio-
lation value thresholds hierarchy includes a plurality of
violation value levels, wherein a violation value level in
the plurality of violation value levels corresponds to a
level of data processing system in the plurality of levels
of data processing systems in the hierarchy.

10. The computer usable program product of claim 1, fur-
ther comprising:
computer usable code to cause the processor to identify,
responsive to the resource requirement exceeding a
resource requirement threshold, a second performance
parameter of the VM exceeding a second threshold;

computer usable code to cause the processor to identify a
second operation to be performed relative to the VM to
improve the second performance parameter; and

computer usable code to cause the processor to replace, in
the determining and the revising, the performance
parameter with the second performance parameter and
the operation with the second operation.

10

25

40

22

11. The computer usable program product of claim 1, fur-
ther comprising:
computer usable code to cause the processor to identify,
responsive to the violation value exceeding a violation
value threshold, a second performance parameter of the
VM exceeding a second threshold;

computer usable code to cause the processor to identify a
second operation to be performed relative to the VM to
improve the second performance parameter; and

computer usable code to cause the processor to replace, in
the determining and the revising, the performance
parameter with the second performance parameter and
the operation with the second operation.

12. The computer usable program product of claim 1,
wherein the performance parameter exceeding the threshold
corresponds to a violation of a policy in the VM configured
according to the first configuration.

13. The computer usable program product of claim 1,
wherein the computer usable code to cause the processor to
revise enables computer usable code to cause the processor to
unilaterally provision computing capabilities, and wherein
the policy is a service level agreement (SLA).

14. The computer usable program product of claim 1,
wherein the operation includes allocating a resource to the
VM, and wherein software is provided as a service in a cloud
computing environment.

15. The computer usable program product of claim 1,
where the performance parameter is a combination of a plu-
rality of parameters.

16. The computer usable program product of claim 1,
wherein a first violation value of a first level in the violation
value thresholds hierarchy relates to a second violation value
of'a second level in the violation value thresholds hierarchy
by a mathematical function.

17. The computer usable program product of claim 1,
wherein the violation value comprises a probability of a vio-
lation occurring in the specified level in the hierarchy within
the environment by performing the operation in the specified
level in the hierarchy within the environment.

18. The computer usable program product of claim 1,
wherein a first resource requirement value of a first level in the
resource requirement thresholds hierarchy relates to a second
resource requirement value of a second level in the resource
requirement thresholds hierarchy by a mathematical func-
tion.

